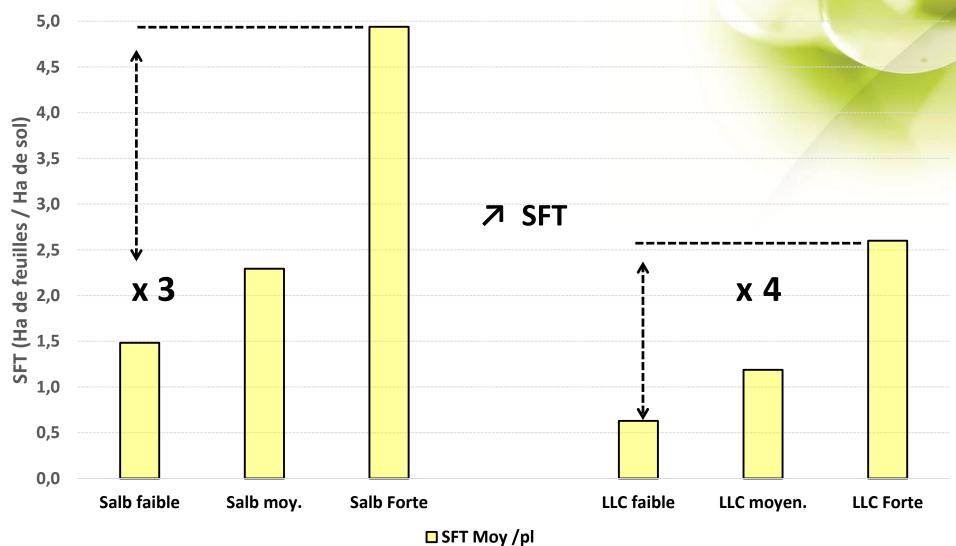


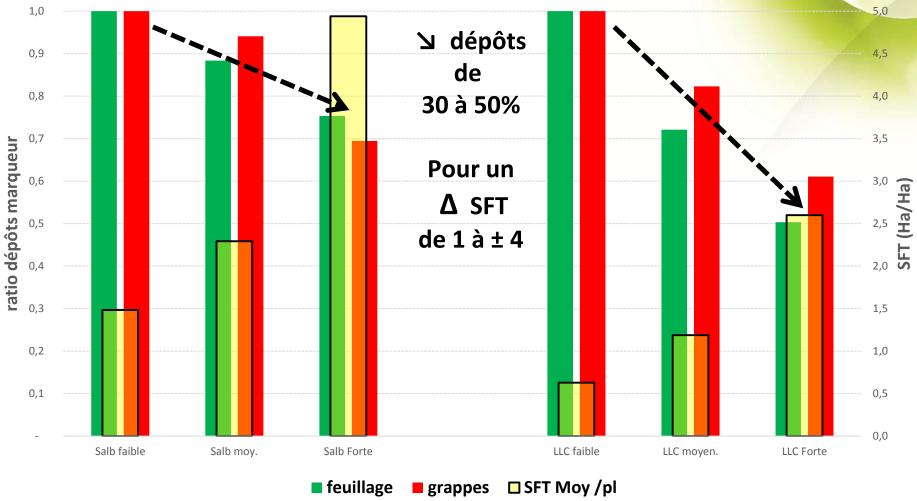
Moduler les doses de produits phytosanitaires : travaux et perspectives

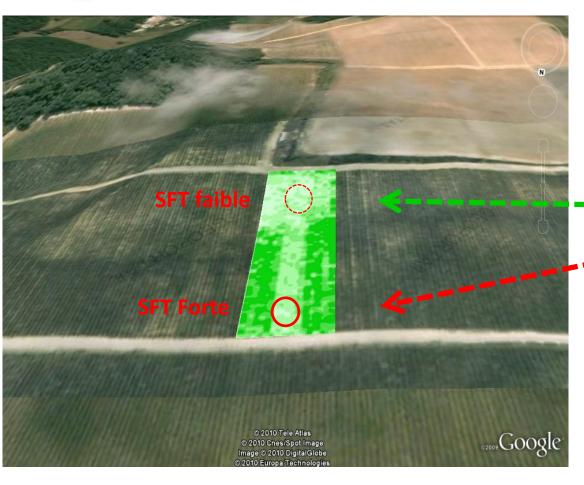
zonage d'Unités de Fonctionnement Physiologique Plan de Traitement Optimisé®

B Delfour, C Debord, M Vergnes, A Bennabi, T Quemar, A Billotte, L Fredou, L Davadan, M Raynal : **IFV –UMT SEVEN** R Fulchic, M Georges, U Marino, N Biron : **Château Léoville Las Cases**


Chaire Agrotic Talence – 4 Décembre 2018

Variation intra parcellaire de la surface foliaire totale (SFT) développée par la vigne (Merlot Sept. 2013)





Variation de la sensibilité intra parcellaire : mildiou

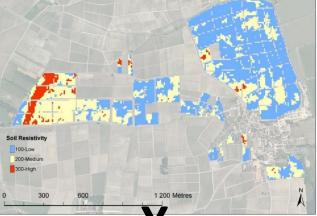
Merlot - Salleboeuf (33) septembre 2009 Greenseeker : NDVI Sur 18 rangs

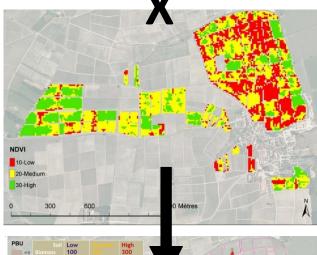
6 rangs centraux = témoin non traité :
Baisse indice NDVI = destruction du feuillage / mildiou

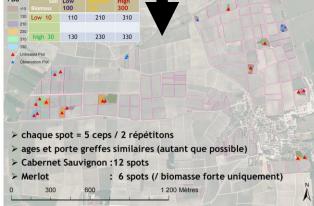
Intensité moyenne de destruction du feuillage au stade véraison (11/08/09) : 65%

SFT faible: 10 % Différence de sensibilité = 90%

Variation sensibilité ≡ efficacité programme fongicide!


Produit phytosanitaire, « dose minimale efficace » : Variable (même proportion ?) à l'échelle du cep.





Château Léoville Las Cases

Château Couhins

Elaboration dispositif d'étude des variations intra parcellaires

(concept P.T.O® / projet VitaScrypt)

Résistivité électrique Sol

X

NDVI

1

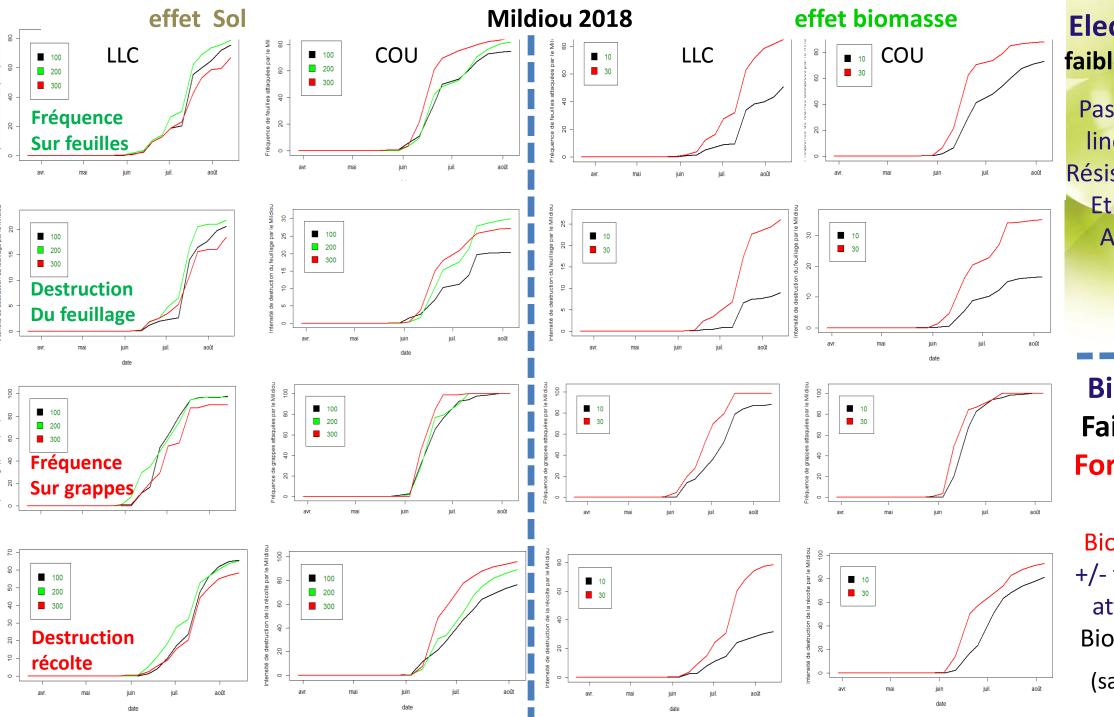
Zonage UFP homogènes

Unités Fonctionnement Physiologique

Observations Physiologiques

- stade phénologique
- → bourgeons
- → rameaux primaires et E.C.
- → des grappes

- Sur TNT et pour chaque cep
- Estimation fréquence et intensité d'attaques :
 - → Sur Feuilles
 - → Sur grappes


20 contrôles effectués Débourrement à véraison

Enregistrement en base de données

Elect. Resistiv.: faible Moy. Forte

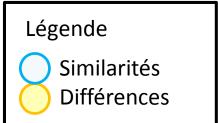
Pas de relation linéaire entre Résist. électrique Et sensibilité Au mildiou

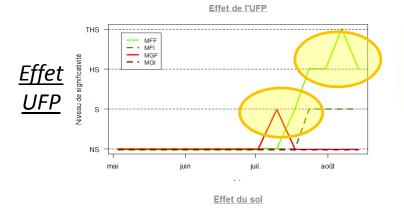
Biomasse:

Faible: noir

Forte: rouge

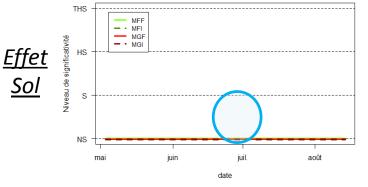
Biomasse forte +/- toujours plus attaquée que Biomasse faible (sauf LLC 2014)

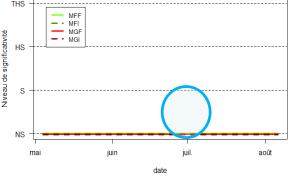

<u>Effet</u>


<u>Biomasse</u>


Léoville Las Cases

Couhins



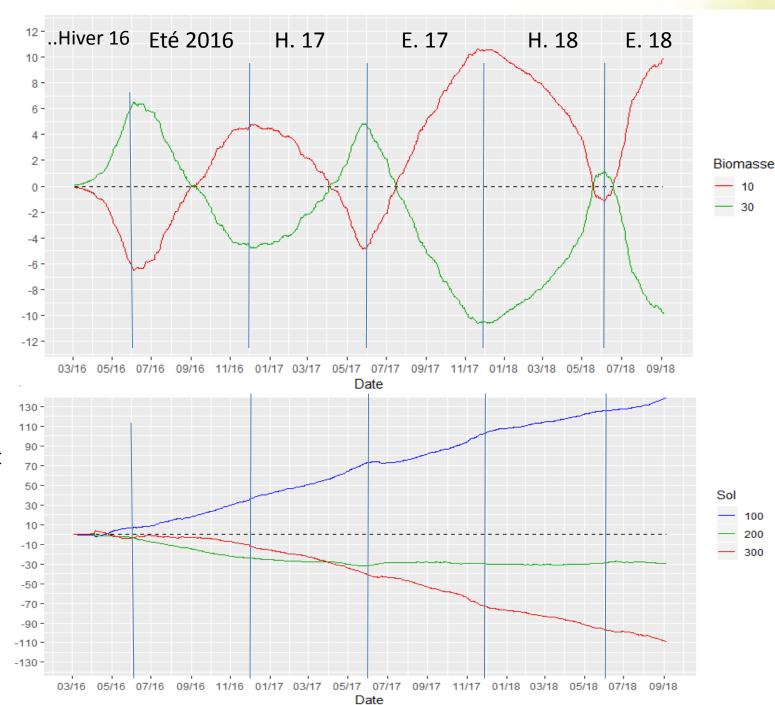

En 2018:


- UFP significatif sur LLC seulement.
- Effet sol non significatif en 2018.
- Effet biomasse discriminant sur feuillage LLC > COU

Effet de la biomasse

Conclusions et perspectives

- > Zonage Unités Fonctionnements Physiologiques :
 - ✓ Clef de lecture pertinente de la variabilité à l'échelle intraparcellaire
 - ✓ Effets inconstants (intra et inter millésimes): itinéraire climatique
 - ✓ Généricité Robustesse ? : dispositif semble transposable
 - → Le dispositif expérimental explique +/- 50% de la variabilité globale
 - → Depuis mars 2016 : mesure du micro climat dans le couvert végétal (T°, RH %)


Cumul Températures : Écart à la moyenne

Effet Biomasse:

- rythme saisonnier
- ¬ plante impacte / μclimat (T° et Hygrométrie)

Effet Sol:

- Lien entre R(Sol) et T° dans le couvert végétal
- Spécifique / chaque R(sol)
- Interaction Itinéréaire
 Climatique x Sol

Modulation des doses à l'échelle intra parcellaire : Concept de pulvérisateur intelligent

Fonctionnement : temps réel

→ Capteurs embarqués solution « Rolls Royce »

temps différé

→ Positionnement GPS
Plan Traitement Optimisé®

Obligation : ordinateur de bord

ET

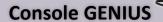
Cuves bouillies concentrées / pompes doseuses : prototypes PELLENC, DIIMOTION, ...

UC

Modulation pression par contrôle (pression ou débit bouillie)

= test 2018 sur appareil Jet porté à LLC (N. Biron; M2 U Bdx)

Chaine outils



Géopositionnement

Console CFX-750

Réception GPS + lecture préconisation

Gestion DPAE

AGRO system

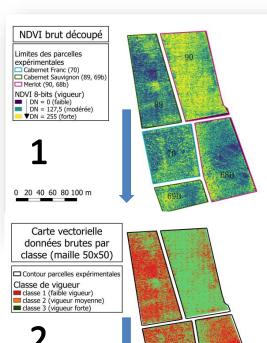
Système « BUS CAN »

Communication entre consoles

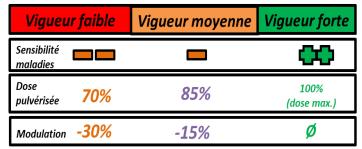
Braglia **Electrovannes et** régulation

Coupure de tronçons

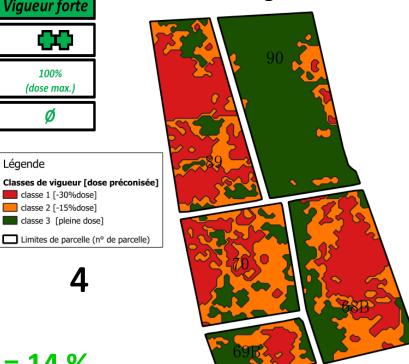
Hypro Buses **42 Buses** spécifiques


Plage modulation de pression

LLC: 2013 / 15: Tests préliminaires doses et coupures tronçons


2018: Test modulation intraparcellaire: doses consignes / NDVI (N. Biron)

1: NDVI Brut


5 parcelles expérimentales : Cabernets Franc et Sauvignon et Merlot Conduites en conventionnel et AB

2: Vectorisation 3 classes Maille 0.50 m

Légende

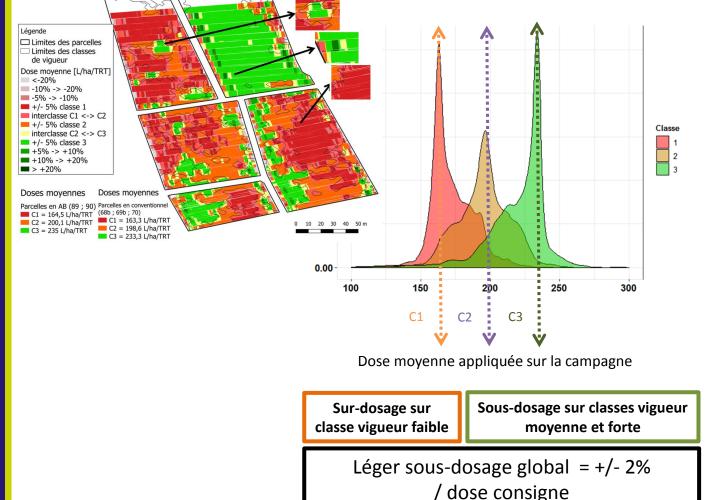
classe 1 [-30%dose] classe 2 [-15%dose] classe 3 [pleine dose] **Carte consigne finale**

Simplification Maille 2 m

20 40 60 80 100 m

Carte vectorielle

données brutes par


classe (maille 200x200)

☐ Contour parcelles expérimentales Classe de vigueur classe 1 (faible vigueur)
classe 2 (vigueur moyenne) classe 3 (vigueur forte)

Economie théorique de produit = 14 %

Résultats : Qualité d'application niveau de protection phytosanitaire : Observations mildiou sur 45 placettes (stade début véraison)

Diminution globale réelle de produit = 16%

Dégâts généralisés sur les témoins Etat sanitaire très satisfaisant sur doses réduites!

Etat sanitaire final sur les cinq parcelles			Moyenne globale	Vigueur faible		Vigueur moyenne		Vigueur forte	
Mildiou	Feuille	FAO MF	8,60%	6,0%	b	8,7%	ab	X 2 11,1%	a
		IAO MF	1,95%	1,1%	b	1,8%	ab	2,9%	а
	rappe	FAO MG	11,27%	7,4%	b	12,3%	ab	X 2 14,1% X 2	a
	G	IAO MG	1,81%	1,1%	b	2,0%	ab	2,4%	а

Application sur l'exploitation entière : gain 20% (+/- 11k€ en 2018)
16 % adaptation intra parcellaire
4% coupure tronçons

Conclusions et perspectives

- ✓ Clef de lecture pertinente de la variabilité à l'échelle intraparcellaire
- ✓ Effets inconstants (intra et inter millésimes) : itinéraire climatique
- ✓ Généricité Robustesse ? : dispositif semble transposable

> Modulation des doses :

- ✓ Marges d'optimisation très nettes / adaptation des doses
- ✓ Maitrise des systèmes complexe :
 - ✓ Haute technicité
 - ✓ Formation personnel
 - √ (stabilité signal GPS)

Changer de raisonnement ? : réglage pulvé constant / modulation vitesse ? 5 km/h : zones risque fort / 7.5 km/h / zones risque faible

- Génération Algorithme calcul des doses P.T.O:
 - ✓ Collaboration laboratoire CATIE (Matméca U Bdx)
 - ✓ Analyse « Big Data » décevante : manque données d'observation !
 - => Nécessité de développer les systèmes de détection (précoce) des symptômes ET quantification des dégâts

Merci pour votre attention!

Aux financeurs et à la collaboration des nombreux collègues associés au projet

B Delfour, C Debord, M Vergnes, A Bennabi, T Quemar, A Billotte, L Fredou, L Davadan, M Raynal: IFV –UMT SEVEN R Fulchic, M Georges, U Marino, N Biron: Château Léoville Las Cases

This project has received funding from the European Union's Seventh Program for research, technological development and demonstration under grant agreement No 311775

